
Series analysis of the two-dimensional step model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 495

(http://iopscience.iop.org/0305-4470/18/3/024)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 09:24

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A: Math. Gen 18 (1985) 495-499. Printed in Great Britain 

Series analysis of the two-dimensional step model 

A Nymeyer and A J Guttmann 
Department of Mathematics, Statistics and Computer Science, The University of Newcastle, 
Newcastle, NSW 2308, Australia 

Received 26 June 1984, in final form 14 September 1984 

Abstract. An n-fit series analysis of the susceptibility of the two-dimensional step model 
is carried out. The work follows a similar analysis by Ferer and Velgakis of the planar 
and X Y  models. Due to the nature of the interaction function, it is expected that a vortex 
induced transition is not possible for the step model. This is confirmed by the n-fit analysis. 

We use the usual notation and write the classical Heisenberg Hamiltonian as 
N 

H = - C JaSI"'S:"' 
( 9 )  a = l  

where (JI , .  . . , J N )  and (St'), . . . , S:") are N-dimensional interaction and spin vectors 
(respectively) and the summation is over nearest-neighbour pairs (U). Strictly speaking, 
J is an N-dimensional, second-order diagonal tensor, but we adopt the conventional 
notational simplification of treating it as an N-dimensional vector. 

If we restrict to N = 2, we can associate an angle 8, and interaction function C( 0,)  
with each vector SI and can write 

H = - J C  c(8,-e,) 
( v )  

where now J = J ,  = J2,  corresponding to the isotropic case. 
With this notation the planar classical Heisenberg model Hamiltonian is defined 

by C(8)  =cos(@), and the step model by C ( 8 )  = 1 for 181 sir, C(8)  = -1 for i r r< 101 < r 
and C ( 8 + 2 r )  = C(8) .  

Unlike the planar and step models, the X Y  model has a three-dimensional spin 
vector S, = (St'), St2', S!3') but with the diagonal components of the interaction tensor 
given by J = ( J " ) ,  J"),  0). The Hamiltonian for the isotropic X Y  model is 

H = - J  S ~ i ) S ~ 1 ) + S ( 2 j S ( 2 )  ' . I? 
(1,) 

where J = J ( ' j  = J ( * j .  

In 1966 Mermin and Wagner proved that no long-range order (and hence no 
spontaneous magnetisation) could exist for certain two-dimensional models with a 
symmetric and continuous interaction function. In 1973 Kosterlitz and Thouless put 
forward a mechanism by which certain two-dimensional models can have a phase 
transition, but have no long-range order. Models in this category have a low- 
temperature phase occupied by bound vortex-antivortex pairs which destroy the 
long-range order. At the critical temperature these pairs begin to dissociate, and this 
leads to increasing disorder in the system. 
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The Mermin and Wagner proof means that the planar model cannot have a conven- 
tional phase transition. The planar model can however undergo an unconventional 
phase transition of the type formulated by Kosterlitz and Thouless (KT) ,  as can the 
X Y  model. The Mermin and Wagner proof does not apply to the step model, so it 
may have a conventional phase transition. It is expected (Guttmann and Joyce 1973), 
however, to be in the same universality class as the planar and X Y  models. It is 
therefore of much interest to know whether the step model has a phase transition, and 
if so, of what type. 

Guttmann (1978) investigated the critical behaviour of the planar, X Y  and step 
models on a triangular lattice using a method of Pad6 analysis which differentiated 
between algebraic and exponential ( KT type) singularities. He studied the high- 
temperature susceptibility of these models and found good evidence in the case of the 
planar model, and weak evidence in the case of the X Y  model supporting a KT type 
phase transition. In the case of the step model, neither an algebraic nor an exponential 
singularity could be located. 

Camp and Van Dyke (1975) also studied the susceptibility series of the two- 
dimensional planar and X Y  models using a Pad6 analysis. They also found support 
for a KT type transition for both these models. The support for the planar model was 
however only weak. They did not study the step model. 

In neither of the above studies was it possible to confirm the susceptibility exponent 
Y = as conjectured by Kosterlitz (1974). 

In 1983, Ferer and Velgakis demonstrated that for certain types of singular 
behaviour, an n-fit analysis is more informative than a double logarithmic Pad6 analysis, 
as used by Guttmann (1978). In particular they found that whereas low order analytic 
or weakly divergent correction terms of a dominant KT type singularity can disrupt a 
double logarithmic Pad6 analysis, an n-fit analysis is much less affected. When they 
applied the n-fit analysis to the planar models, Ferer and Velgakis found good evidence 
to support a KT form for the dominant singularity of the susceptibility. The evidence 
is strongest for the X Y  model, and somewhat weaker for the planar model. 

Using the same technique as Ferer and Velgakis, and assuming a KT form for the 
susceptibility we write 

xo = A exp[B( 1 - K /  K c ) - ” ]  

where K = J / k T  

nomials, we can, after some algebra, re-express ( 1 )  as 
Expanding ( 1  - K /  K c ) - ”  by the binomial theorem, and using the theory of multi- 

X 

xo= c C,KJ 
j = O  

where C, = C,(A, B, v, K J .  
The four parameters A, B, v and K ,  in this expression can be 4-fitted to the known 

series expansion ,yo = d,KJ. We therefore have successive sets of four simultaneous 
equations in four unknowns of the form C, = d, for i = m -3, m - 2 ,  m - 1,  m from 
which we find estimates A,, E,, v, and Kc, ,  for m n. In practice we can simplify 
these sets of four nonlinear equations into sets of two nonlinear equations in two 
unknowns. From these we can obtain v, and B,. We can then calculate from the 
original equation K c , ,  and A,, using a modification of the Powell hybrid method as 
implemented by the Numerical Algorithms Group (NAG),  Mark 9, 1982 distribution. 
This library package is running on a VAX 111780 computer. 
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Before applying this method to the step model, we repeated the analysis of Ferer 
and Velgakis on the correlation length and susceptibility series of the planar and X Y  
models, using their coefficients. While in general the numerical results of our analysis 
agree with those of Ferer and Velgakis, the conclusions we draw from this analysis 
are more cautious. This is mainly due to the at best oscillatory ( X U  model) and at 
worst erratic (planar model) convergence of the estimates. 

We are most interested in the planar model as this model most closely resembles 
the step model on thermodynamic grounds. For this model the results of the 4-fit 
analysis of the correlation length and susceptibility series is given in table 1.  The 
corresponding table in Ferer and Velgakis is identical to this table except for a number 
of gaps which correspond to systems of equations for which they were unable to obtain 
a solution. This fuller table does, we think, show that the convergence is not oscillatory, 
as Ferer and Velgakis suggest, but somewhat erratic. 

A number of general comments can be made about the analysis. The parameter 
K , ,  varied little between the above results and trivial or 'ridiculous' solutions. The 
analysis was therefore insensitive to the choice of Kc,". As already described, the 
estimates v, and B, involved the numerical solution of a system of two nonlinear 
equations. A point was very quickly reached after which reducing the error bound 
any further had no effect on the choice of solution. The initial guesses vo and Bo, 
however, had a dramatic effect on the analysis. The approach used was to let vo take 
on values between 0.4 and 0.6, and change Bo until a solution was located. For both 
the correlation length and the susceptibility it was found that the existence of a solution 
was heavily dependent upon the initial guess Bo. Straying too far from the 'correct' 
Bo would lead to a breakdown in the numerical analysis procedure. 

The analysis of the corresponding X Y  model series was far better behaved. There 
was however, still a pronounced but slow oscillation in the estimates which made 
extrapolation to large n difficult (see also Ferer and Velgakis). If we assume univer- 
sality, then the results of the 4-fit analysis on the X Y  model together with the planar 
model does lead to good support for a KT type singularity, and furthermore, an exponent 
of v=OS can be inferred from the sequence of estimates. If, however, we do not 
assume universality, then for the planar model alone, it would appear that the best 
we could say is that a KT type singularity is not inconsistent with the analysis. 

We are now in a position to apply the n-fit analysis to the step model. The 
coefficients of the isothermal susceptibility on the square and triangular lattices are 
given in table 2. 

Table 1. Planar model. 4-fit analysis of the correlation length and susceptibility series on 
the triangular lattice. 

n 

4 
5 
6 
7 
8 
9 

I O  
I 1  

0.590 2.78 
0.418 2.94 
0.475 2.89 
0.313 3.02 
0.389 2.97 
0.560 2.86 
0.489 2.90 
0.359 2.91 

( X  - l ) / K  

VI? KC," 

0.374 3.06 
0.474 2.97 
0.806 2.15 
0.701 2.81 
0.477 2.93 
0.452 2.95 
0.535 2.9 1 
0.566 2.89 
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The 4-fit analysis of these series suggested quite srongly that no KT type transition 
is present. For most choices of the initial values vo and Bo no solution could be found. 
In those instances where a solution was found, the exponent Y persistently tended to 
zero. This was accompanied by the constant B also tending to zero, and the critical 
amplitude A tending to become very large. This suggests that the series cannot be 
fitted to a KT type exponential singularity. 

Ferer and Velgakis found that better results could be acheived if a left-shifted series 
is used (i.e. subtract the constant and divide by K ) .  In the case of the step model 
however, no improvement in behaviour between the original and left-shifted series 
could be found for either lattice. 

As discussed earlier, when analysing a function of KT form, an n-fit analysis in 
most cases is less affected by analytic or weakly divergent confluent correction terms 
than a double logarithmic Pad6 analysis. However, since an n-fit analysis is essentially 
a variation of the ratio method, it will be less able to handle competing complex or 
non-physical singularities if they are present. Hence this method is not expected to 
be useful in a situation where there is more than one non-confluent singularity 
dominating low-order terms. If universality is to be satisified, then presumably this 
situation is the cause of the ‘poor’ behaviour of the 4-fit analysis when applied to the 
susceptibility of the spin = f XY model. If the classical and quantum X Y  models are 
in the same universality class, complex singular behaviour must be disrupting the n-fit 
analysis of the quantum model. Camp and Van Dyke (1976) have studied the classical 
and quantum (three-dimensional) Heisenberg models using an n-fit analysis. They 
find that the analysis breaks down in the quantum case, and conjecture that particularly 
‘nasty’ singularities must be at work for universality to be satisfied. 

Is it possible that competing non-physical singularitiesare upsetting the n-fit analysis 
of the step model? We can test this theory somewhat by analysing the transformed 
susceptibility on the triangular lattice. Using Pad6 analysis, Guttmann and Joyce 
(1973) located on the negative real axis a competing singularity, and transformed it 
away by using an Euler transformation. The resulting series is given in Guttmann and 

Table 2. Zero-field isothermal susceptibility coefficients kTXo( T ) / N m 2  = Z, d , K ”  for K = 
J / k , T  on the square and triangular lattices. 

Square lattice Triangular lattice 
n 4, d,  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
IO 
1 1  
12 

1.000 000 00 
4.000 000 00 
6.000 000 00 

10.666 6667 
16.833 3333 
23.733 3333 
33.905 5556 
44.380 9524 
57.068 1542 
71.0137562 
85.044 1729 

102.1 13 786 
117.764 703 

1.000 000 00 
6.000 000 00 

15.0000000 
44.000 0000 

112.750 000 
280.800 000 
666.591 667 

1532.973 8 I 
3424.240 92 
7476.85 t 

t This coefficient is not known exactly (see Guttmann and Joyce 1973), the central estimate 
is used here. The possible error is too small to affect the subsequent analysis. 
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Joyce. The 4-fit analysis of this series however, was no better behaved than the original 
series. In those few cases where solutions did exist, estimates were erratic, with v, 
and B,, tending to zero, and A,, very large. We should add however, that the triangular 
lattice series at order 9 is still rather short. 

Based on this evidence we can conclude with some confidence that no KT type 
phase transition occurs for the two-dimensional step model. 

Very recent work by Barber (1983) supports a stronger conclusion. Using a Migdal 
renormalisation group scheme Barber finds that the step model has no low-temperature 
phase. However, he does find evidence to suggest that a modified step model, which 
can be defined by the interaction function C(6) = 1 for 161 s ST, C(6) = -1 for 
657 < 101 < 57 and C( 0 + 257) = C( 6) where 6 = defines the step model, does have a 
phase transition for 6 <;. This model is now being investigated. 
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